463. The Structure of Cedrelone: X-Ray Analysis of Cedrelone Iodoacetate.¹

By I. J. GRANT, MISS J. A. HAMILTON, T. A. HAMOR, J. MONTEATH ROBERTSON, and G. A. SIM.

In order to determine the molecular structure of cedrelone, the principal crystalline constituent of the heartwood of *Cedrela toona*, we have carried out a crystal-structure analysis of the heavy-atom derivative, cedrelone iodoacetate. The crystals are orthohombic, space group $P2_12_12_1$, with four molecules of $C_{28}H_{31}IO_6$ in the unit cell of dimensions a = 6.97, b = 27.44, c = 13.74 Å. Phase determination was based initially on the iodine atom, and Fourier and least-squares refinement methods were employed in the determination of the atomic co-ordinates. Our final results define the constitution and relative stereochemistry of cedrelone iodoacetate to be as in (I); cedrelone is therefore assigned formula (II).

CEDRELONE, the principal crystalline constituent of the heartwood of the Indian tree *Cedrela toona*, was first isolated by Parihar and Dutt,² who favoured the molecular formula $C_{25}H_{30}O_5$ and reported the presence of a lactone ring, a phenolic hydroxyl and a ketone group, and an ethylenic double bond. Later chemical and spectroscopic work at Glasgow,¹ Madras,³ and Zurich ³ showed that the correct molecular formula is $C_{26}H_{30}O_5$ and that the molecule contains an $\alpha\beta$ -unsaturated ketone, a β -monosubstituted furan ring, and an

¹ For a preliminary report see Grant, Hamilton, Hamor, Hodges, McGeachin, Raphael, Robertson, and Sim, *Proc. Chem. Soc.*, 1961, 444.

² Parihar and Dutt, J. Indian Chem. Soc., 1950, 27, 77.

³ Gopinath, Govindachari, Parthasarathy, Viswanathan, Arigoni, and Wildman, Proc. Chem. Soc., 1961, 446.

enolised α -diketone grouping similar in environment to that of diosphenols in the limonin series.4

No further chemical information about cedrelone was available to us when we began an X-ray analysis of cedrelone iodoacetate,⁵ and a direct determination of the crystal structure of this derivative was effected by means of the usual phase-determining heavyatom method.⁶ A number of three-dimensional electron-density distributions were evaluated, and this was followed by least-squares refinement of the positional and thermal atomic parameters. At the end the value of R, the average discrepancy between measured and calculated structure amplitudes, was 17.5% over 1163 reflexions.

Our final results establish the constitution and stereochemistry (apart from absolute configuration) of cedrelone iodoacetate to be as in (I); it follows that cedrelone is represented by formula (II). The independent chemical studies at Glasgow,^{1,5} Madras,³ and Zurich³ are consistent with this structure. Cedrelone, like limonin^{4,7} (III) and

gedunin 8,9 (IV), is clearly a triterpenoid of the euphol 10 (V) type and its biogenesis presumably follows the route proposed for limonin.⁴

The final electron-density distribution for cedrelone iodoacetate is shown in Fig. 1 as superimposed contour sections drawn parallel to (001) and covering the region of one molecule; the corresponding atomic arrangement is illustrated in Fig. 2. The interatomic distances and valency angles calculated from the final atomic co-ordinates (see Table 1) are listed in Table 2. The standard deviations of the final atomic co-ordinates were estimated in the usual manner from the least-squares residuals (see Experimental section) and are shown in Table 3; from the results the average estimated standard deviation (e.s.d.) of a carbon–carbon bond is about 0.09 Å and of a carbon–oxygen bond about 0.07 Å. The average e.s.d. of a valency angle is about 4°.

The average carbon-carbon single-bond length is 1.55 Å, in good agreement with the value of 1.545 Å in diamond. The average carbon-carbon double-bond length, 1.35 Å,

⁴ Barton, Pradhan, Sternhell, and Templeton, J., 1961, 255; Arigoni, Barton, Corey, and Jeger, in collaboration with Cagliotti, Dev, Ferini, Glazier, Melera, Pradhan, Schaffner, Sternhell, Templeton, and Tobinaga, Experientia, 1960, 16, 41.

⁵ Hodges, McGeachin, and Raphael, following paper.

 Robertson and Woodward, J., 1937, 219; 1940, 36; Sim, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 227.

Arnott, Davie, Robertson, Sim, and Watson, Experientia, 1960, 16, 49; J., 1961, 4183.

Akisanya, Bevan, Hirst, Halsall, and Taylor, J., 1960, 3827.
 Sutherland, Sim, and Robertson, Proc. Chem. Soc., 1962, 222.

¹⁰ Barton, McGhie, Pradhan, and Knight, Chem. and Ind., 1954, 1325; J., 1955, 876.

FIG. 1. The final three-dimensional electron-density distribution for cedrelone iodoacetate shown by means of superimposed contour sections drawn parallel to (001) and covering the region of one molecule. Contour interval 1 eÅ⁻³, starting from the 2 eÅ⁻³ level, except around the iodine atom where the interval is 5 eÅ⁻³.

FIG. 2. The arrangement of atoms corresponding to Fig. 1.

TABLE 1.

Atomic co-ordinates and isotropic temperature factors.

(Origin of co-ordinates as in "International Tables." *)

Atom	x a	y/b	z c	B	Atom	x/a	y/b	z/c	B
C(1)	-0.3157	-0.0520	0.1550	4.5	C(19)	0.0544	-0.0578	0.1154	4.3
C(2)	-0.3783	-0.0957	0.1406	$4 \cdot 9$	C(20)	-0.1626	0.2006	0.3251	5.7
C(3)	-0.2634	-0.1337	0.1687	6.6	C(21)	-0.2756	0.2147	0.4005	8.3
C(4)	-0.1515	-0.1311	0.2654	4.1	C(22) ·	-0.3139	0.2093	0.2532	6.4
C(5)	-0.0985	-0.0781	0.2787	$3 \cdot 9$	C(23)	-0.4079	0.2487	0.2789	$8 \cdot 9$
C(6)	-0.0131	-0.0596	0.3679	$4 \cdot 3$	C(28)	-0.2911	-0.1204	0.3437	$6 \cdot 1$
C(7)	0.0318	-0.0086	0.3925	5.8	C(29)	0.0410	-0.1661	0.2702	7.5
C(8)	0.0840	0.0183	0.2986	$3 \cdot 4$	C(30)	0.2710	0.0030	0.2637	4.5
C(9)	-0.0851	0.0093	0.2311	$3 \cdot 1$	C(31)	0.1412	-0.1032	0.4855	5.7
C(10)	-0.1186	-0.0424	0.1949	$6 \cdot 0$	C(32)	0.1432	-0.1422	0.5768	5.6
C(11)	-0.0764	0.0460	0.1412	6.7	O(1)	-0.2808	-0.1767	0.1316	7.8
C(12)	-0.1651	0.0958	0.1854	5.7	O(2)	-0.0223	-0.0932	0.4444	5.0
C(13)	-0.0779	0.1067	0.2925	$4 \cdot 5$	O(3)	0.0597	0.0047	0.4678	$5 \cdot 0$
C(14)	0.0798	0.0744	0.3175	$3 \cdot 8$	O(4)	0.2559	0.0974	0.2779	$4 \cdot 0$
C(15)	0.0235	0.1024	0.3824	$4 \cdot 8$	O(5)	-0.3849	0.2467	0.3740	$8 \cdot 3$
C(16)	0.1063	0.1492	0.3960	$5 \cdot 5$	O(6)	0.2847	-0.0888	0.4452	$5 \cdot 9$
C(17)	-0.0109	0.1585	0.3082	$4 \cdot 6$	I	0.2808	-0.2054	0.5353	6.0
C(18)	-0.2785	0.0931	0.3694	3.4					

* "International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, 1952, Vol. I.

TABLE 2.

Interatomic distances (Å) and angles.

Intramolecular bonded distances

$\begin{array}{c} C(1)-C(2)\\ C(1)-C(10)\\ C(2)-C(3)\\ C(3)-C(4)\\ C(3)-O(1)\\ C(4)-C(5)\\ C(4)-C(5)\\ C(4)-C(29)\\ C(4)-C(29)\\ C(5)-C(6)\\ C(5)-C(10) \end{array}$	1.29 1.50 1.57 1.54 1.29 1.51 1.55 1.65 1.45 1.52	$\begin{array}{c} C(6)-C(7)\\ C(6)-O(2)\\ C(7)-C(8)\\ C(7)-O(3)\\ C(8)-C(9)\\ C(8)-C(14)\\ C(8)-C(14)\\ C(8)-C(30)\\ C(9)-C(10)\\ C(9)-C(11)\\ C(10)-C(19) \end{array}$	1.48 1.40 1.53 1.11 1.52 1.56 1.45 1.52 1.59 1.68	$\begin{array}{c} C(11)-C(12)\\ C(12)-C(13)\\ C(13)-C(14)\\ C(13)-C(17)\\ C(13)-C(18)\\ C(14)-C(15)\\ C(14)-C(15)\\ C(14)-O(4)\\ C(15)-C(16)\\ C(15)-O(4)\\ C(15)-O(4)\\ C(16)-C(17) \end{array}$	1.62 1.62 1.45 1.51 1.79 1.55 1.48 1.54 1.46 1.47	$\begin{array}{c} C(17)-C(20)\\ C(20)-C(21)\\ C(20)-C(22)\\ C(21)-O(5)\\ C(22)-C(23)\\ C(23)-O(5)\\ C(31)-C(32)\\ C(31)-C(32)\\ C(31)-O(2)\\ C(31)-O(6)\\ C(32)-I \end{array}$	1.58 1.36 1.47 1.22 1.31 1.32 1.65 1.30 1.21 2.05
		Intramoleo	cular no	n-bonded distances			
$\begin{array}{cccc} C(1) & \cdots & C(4) \\ C(1) & \cdots & C(11) \\ C(1) & \cdots & C(28) \\ C(1) & \cdots & O(1) \\ C(2) & \cdots & C(5) \\ C(2) & \cdots & C(9) \\ C(2) & \cdots & C(19) \\ C(2) & \cdots & C(29) \\ C(2) & \cdots & C(29) \\ C(3) & \cdots & C(6) \\ C(3) & \cdots & C(10) \\ C(3) & \cdots & C(10) \\ C(4) & \cdots & C(31) \\ C(4) & \cdots & C(31) \\ C(4) & \cdots & C(31) \\ C(5) & \cdots & C(5) \\ C(5)$	$2 \cdot 89$ $3 \cdot 17$ $3 \cdot 74$ $2 \cdot 76$ $3 \cdot 21$ $3 \cdot 23$ $3 \cdot 93$ $3 \cdot 83$ $2 \cdot 72$ $3 \cdot 93$ $3 \cdot 91$ $3 \cdot 92$ $3 \cdot 90$ $3 \cdot 41$ $3 \cdot 61$ $3 \cdot 62$ $3 \cdot 50$ $3 \cdot 50$	$\begin{array}{c} C(6) & \cdots & C(29) \\ C(6) & \cdots & C(30) \\ C(6) & \cdots & C(32) \\ C(6) & \cdots & O(6) \\ C(7) & \cdots & C(10) \\ C(7) & \cdots & C(11) \\ C(7) & \cdots & C(13) \\ C(7) & \cdots & O(6) \\ C(8) & \cdots & C(12) \\ C(8) & \cdots & C(13) \\ C(9) & \cdots & C(14) \\ C(10) & \cdots & C(12) \\ C$	$3 \cdot 24$ $2 \cdot 99$ $3 \cdot 82$ $2 \cdot 47$ $3 \cdot 06$ $3 \cdot 84$ $3 \cdot 53$ $3 \cdot 33$ $3 \cdot 54$ $3 \cdot 000$ $3 \cdot 64$ $3 \cdot 911$ $3 \cdot 15$ $3 \cdot 844$ $3 \cdot 903$ $3 \cdot 271$ $3 \cdot 455$ $3 \cdot 811$ $3 \cdot 881$ $3 \cdot 881$ $3 \cdot 879$ $3 \cdot 72$	$\begin{array}{ccccc} C(10) & \cdots & O(1) \\ C(10) & \cdots & O(2) \\ C(10) & \cdots & O(2) \\ C(11) & \cdots & C(17) \\ C(11) & \cdots & C(18) \\ C(11) & \cdots & C(19) \\ C(11) & \cdots & C(30) \\ C(11) & \cdots & C(30) \\ C(12) & \cdots & C(15) \\ C(12) & \cdots & C(15) \\ C(12) & \cdots & C(16) \\ C(12) & \cdots & C(20) \\ C(12) & \cdots & C(21) \\ C(13) & \cdots & C(22) \\ C(13) & \cdots & C(22) \\ C(13) & \cdots & C(22) \\ C(13) & \cdots & C(21) \\ C(13) & \cdots & C(30) \\ C(13) & \cdots & C(30) \\ C(14) & \cdots & C(30) \\ C(15) & \cdots & C(18) \\ C(15) & \cdots & C(30) \\ C(15) & \cdots & C(18) \\ C(15) & \cdots & C(18) \\ C(16) & \cdots & C(18) \\ C(16) & \cdots & C(18) \\ \end{array}$	3.95 3.765 3.671 3.87 3.671 3.180 3.833 3.765 3.420 3.591 3.762 3.852 3.852 3.852 3.820 3.120 3.852 3.820 3.800 3.800 3.800 3.8	$\begin{array}{c} C(16) \cdots C(22) \\ C(17) \cdots C(23) \\ C(17) \cdots O(4) \\ C(17) \cdots O(5) \\ C(18) \cdots C(20) \\ C(18) \cdots C(21) \\ C(18) \cdots C(21) \\ C(18) \cdots C(22) \\ C(18) \cdots C(3) \\ C(19) \cdots C(29) \\ C(19) \cdots C(30) \\ C(28) \cdots C(31) \\ C(28) \cdots O(1) \\ C(28) \cdots O(1) \\ C(29) \cdots C(31) \\ C(29) \cdots O(1) \\ C(29) \cdots O(2) \\ C(29) \cdots O(2) \\ C(29) \cdots O(3) \\ C(30) \cdots O(4) \\ C(30) \cdots O(3) \\ C(3) \cdots O(4) \\ C(3) \cdots O(4) \\ O(3) \cdots O(6) \\ \end{array}$	3.89 3.74 2.54 3.67 3.12 3.37 3.64 3.93 3.65 3.65 3.65 3.65 3.681 3.00 2.811 3.63 3.17 2.63 3.15 3.63 3.17 2.555 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 2.76 3.03 3.02 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.02 3.03 3.03 3.02 3.03 3
$C(6) \cdots C(28)$	3.17	$C(10) \cdots C(30)$	3·13 lecular	distances (~4 Å)			
$\begin{array}{c} \mathrm{C}(32)\cdots\mathrm{O}(4)_{\mathrm{I}}\\ \mathrm{O}(5)\cdots\mathrm{O}(1)_{\mathrm{II}}\\ \mathrm{C}(23)\cdots\mathrm{O}(1)_{\mathrm{II}}\\ \mathrm{O}(3)\cdots\mathrm{C}(1)_{\mathrm{III}}\\ \mathrm{C}(21)\cdots\mathrm{O}(1)_{\mathrm{III}}\\ \end{array}$	$3 \cdot 11$ $3 \cdot 14$ $3 \cdot 23$ $3 \cdot 35$ $3 \cdot 36$	$\begin{array}{c} C(23) \cdots C(29)_{IV} \\ O(6) \cdots C(11)_{I} \\ O(3) \cdots C(19)_{I} \\ O(3) \cdots C(2)_{III} \\ C(15) \cdots C(19)_{I} \end{array}$	3.53 3.57 3.67 3.67 3.76	$\begin{array}{c} C(32) \cdots C(22)_{III} \\ C(23) \cdots C(28)_{II} \\ C(32) \cdots C(12)_{III} \\ C(18) \cdots C(2)_{III} \end{array}$	3.81 3.86 3.87 3.88	$\begin{array}{c} {\rm O}(5) \cdots {\rm C}(29)_{\rm IV} \\ {\rm C}(22) \cdots {\rm C}(29)_{\rm IV} \\ {\rm O}(2) \cdots {\rm C}(12)_{\rm III} \\ {\rm C}(20) \cdots {\rm C}(29)_{\rm IV} \end{array}$	3·92 3·93 3·96 3·98
I he subscript: I = x - y = 1	s refer 1 + z	to the following position $I = I = x + y$	$\frac{1}{1} - z$	$\prod x - y = - y = - y =$	-+ z	IV - r + v + -	- 7
- 2,), 2	1	, 2 , ,,,	2 ~·		~.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~•
$\begin{array}{c} C(2)C(1)C(10)\\ C(1)C(2)C(3)\\ C(2)C(3)C(4)\\ C(2)C(3)O(1)\\ C(4)C(3)O(1)\\ C(3)C(4)C(5)\\ C(3)C(4)C(28)\\ C(3)C(4)C(28)\\ C(5)C(4)C(29)\\ C(5)C(4)C(29)\\ C(5)C(4)C(29)\\ C(4)C(5)C(6)\\ C(4)C(5)C(10)\\ C(6)C(5)C(10)\\ C(5)C(6)O(2)\\ C(7)C(6)O(2)\\ C(7)C(6)O(2)\\ C(6)C(7)C(8)\\ \end{array}$	$\begin{array}{c} 122^\circ \\ 118 \\ 120 \\ 122 \\ 115 \\ 106 \\ 105 \\ 115 \\ 114 \\ 111 \\ 107 \\ 123 \\ 120 \\ 117 \\ 128 \\ 113 \\ 118 \\ 109 \end{array}$	$\begin{array}{c} C(6)C(7)O(3)\\ C(8)C(7)O(3)\\ C(7)C(8)C(9)\\ C(7)C(8)C(14)\\ C(7)C(8)C(30)\\ C(9)C(8)C(14)\\ C(9)C(8)C(30)\\ C(14)C(8)C(30)\\ C(14)C(8)C(30)\\ C(8)C(9)C(11)\\ C(10)C(9)C(11)\\ C(10)C(9)C(11)\\ C(1)C(10)C(5)\\ C(1)C(10)C(9)\\ C(1)C(10)C(9)\\ C(1)C(10)C(9)\\ C(1)C(10)C(9)\\ C(5)C(10)C(9)\\ C(5)C(10)C(9)\\ C(5)C(10)C(19)\\ C(9)C(10)C(19)\\ C(10)C(10)\\ C(10)\\ $	v atence 124° 126° 104 110 110 110 110 111 111 118 110 110	$\begin{array}{l} y \ angles \\ C(9)C(11)C(12) \\ C(11)C(12)C(13) \\ C(12)C(13)C(14) \\ C(12)C(13)C(14) \\ C(12)C(13)C(17) \\ C(12)C(13)C(18) \\ C(14)C(13)C(18) \\ C(17)C(13)C(18) \\ C(17)C(13)C(18) \\ C(17)C(13)C(18) \\ C(17)C(13)C(18) \\ C(13)C(14)C(15) \\ C(8)C(14)C(15) \\ C(8)C(14)C(15) \\ C(13)C(14)C(15) \\ C(13)C(14)C(4) \\ C(15)C(14)O(4) \\ C(15)C(14)O(4) \\ C(15)C(14)O(4) \\ C(14)C(15)C(16) \\ C(14)C(15)O(4) \\ C(16)C(15)O(4) \\ \end{array}$	$103^{\circ} \\ 111 \\ 113 \\ 115 \\ 102 \\ 108 \\ 109 \\ 111 \\ 125 \\ 125 \\ 110 \\ 109 \\ 106 \\ 58 \\ 98 \\ 59 \\ 106$	$\begin{array}{c} C(15)C(16)C(17)\\ C(13)C(17)C(16)\\ C(13)C(17)C(20)\\ C(16)C(17)C(20)\\ C(17)C(20)C(21)\\ C(17)C(20)C(22)\\ C(21)C(20)C(22)\\ C(20)C(21)C(5)\\ C(20)C(22)C(23)\\ C(22)C(23)O(5)\\ C(32)C(31)O(6)\\ O(2)C(31)O(6)\\ O(2)C(31)\\ C(6)O(2)C(31)\\ C(14)O(4)C(15)\\ C(21)O(5)C(23)\\ \end{array}$	$110^{\circ} \\ 98 \\ 120 \\ 112 \\ 135 \\ 120 \\ 93 \\ 110 \\ 108 \\ 100 \\ 119 \\ 124 \\ 117 \\ 110 \\ 115 \\ 63 \\ 114 \\ 114$

	Standard deviations of the final atomic co-ordinates (Å).														
Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$				
C(1)	0.059	0.042	0.046	C(13)	0.054	0.047	0.044	C(29)	0.075	0.050	0.055				
C(2)	0.058	0.045	0.044	C(14)	0.053	0.047	0.041	C(30)	0.063	0.045	0.044				
C(3)	0.069	0.042	0.043	C(15)	0.069	0.038	0.043	C(31)	0.052	0.045	0.056				
C(4)	0.051	0.043	0.047	C(16)	0.059	0.040	0.050	C(32)	0.057	0.058	0.051				
C(5)	0.049	0.038	0.044	C(17)	0.055	0.041	0.049	O(1)	0.051	0.031	0.032				
C(6)	0.061	0.040	0.044	C(18)	0.051	0.036	0.047	O(2)	0.037	0.028	0.030				
C(7)	0.064	0.021	0.049	C(19)	0.053	0.048	0.050	O(3)	0.032	0.028	0.033				
C(8)	0.056	0.041	0.046	C(20)	0.059	0.048	0.043	O(4)	0.033	0.024	0.027				
C(9)	0.047	0.032	0.048	C(21)	0.069	0.058	0.055	O(5)	0.078	0.042	0.058				
C(10)	0.072	0.050	0.048	C(22)	0.050	0.046	0.053	O(6)	0.042	0.026	0.028				
C(11)	0.068	0.049	0.055	C(23)	0.084	0.046	0.063	I	0.004	0.003	0.004				
C(12)	0.063	0.042	0.051	C(28)	0.067	0.046	0.051								

FIG. 3. The crystal structure of cedrelone iodoacetate as viewed in projection along the a-axis.

Fig. 4. The crystal structure of cedrelone iodoacetate as viewed in projection along the c-axis.

TABLE 3.

does not differ significantly from the value of 1.334 Å in ethylene.¹¹ The average carbon– oxygen double-bond distance in the carbonyl groups of 1.20 Å compares favourably with the values of 1.212 Å in parabanic acid,¹² 1.222 Å in p-benzoquinone,¹³ and 1.195 Å in tetrachloro-p-benzoquinone.¹⁴ In the epoxide ring the average carbon-oxygen bond length is 1.47 Å, while the values quoted for ethylene oxide,¹⁵ cyclopentene oxide,¹⁶ and clerodin bromo-lactone 17 are 1.44, 1.47, and 1.49 Å, respectively. The bond lengths in the iodoacetate group show no significant deviation from the expected values.

The strong steric interaction between axial 1,3-methyl groups is reflected in the nonbonded distance of 3.04 Å between C(19) and C(30); on the basis of standard bond lengths and valency angles the distance between these atoms is expected to be only 2.54 Å. The steric interaction between the 28- and 29-methyl groups and the oxygen substituent at position 6 is presumably the reason why ring A adopts a half-boat conformation. Ring c is locked in a boat conformation by the β -oriented epoxide group.

The arrangement of the molecules in the crystal as viewed in projection along the a-axis is shown in Fig. 3; the projection along the c axis is shown in Fig. 4. The intermolecular contacts (see Table 2) are all greater than 3 Å and correspond to normal van der Waals interactions.

EXPERIMENTAL

Crystal Data.—Cedrelone iodoacetate, $C_{28}H_{31}O_6I$; M = 590.4; m. p. 149—150°. Orthorombic, a = 6.97, b = 27.44, c = 13.74 Å, U = 2628 Å³, $D_m = 1.498$ g. cm.⁻³ (by flotation), Z = 4, $D_c = 1.490$ g.cm.⁻³. Space group $P2_12_12_1(D_2^4)$. Absorption coefficient for X-rays ($\lambda = 1.542$ Å) $\mu = 108$ cm.⁻¹. Total number of electrons in the unit cell = F(000) = 1200.

The crystals were grown from solution in aqueous ethanol and were obtained in the form of thin plates with (010) strongly developed.

Experimental Measurements.—Rotation, oscillation, and moving-film photographs were taken with copper- K_{α} ($\lambda = 1.542$ Å) radiation. The cell dimensions were obtained from rotation and equatorial layer line Weissenberg photographs. The space group was determined uniquely from the systematic halvings in the X-ray spectra. For the intensity measurements small crystals were used, completely bathed in a uniform beam of X-rays. No corrections for absorption were applied. Photographic records of the 0kl-5kl and hk0-hk6 spectra were obtained by means of an equi-inclination Weissenberg camera. For correlation of strong and weak reflections the multiple-film technique 18 was used. The intensities were estimated visually and were corrected by the usual factors (Lorentz, polarisation, and rotation ¹⁹). The various layers were placed on the same relative scale by comparison of common reflections on different photographs; the absolute scale was obtained at a later stage by correlation with the calculated structure amplitudes, $|F_c|$. In all only 1163 independent structure amplitudes were measured (Table 4), the low total being a consequence of the non-appearance of reflections beyond moderate values of sin θ . This effect (*i.e.*, a high temperature factor, B) probably indicates some disorder in the molecular packing in the crystal. In addition to the 1163 observed reflections 122 unobserved reflections at low values of sin θ were included in the structure analysis, each being assigned a value of $|F_{o}|$ equal to half the minimum |F| locally observable. A total of 1285 reflections was therefore employed in the determination of the structure.

The crystal density was measured by flotation of the crystals in carbon tetrachloride-light petroleum.

Structure Analysis.—The co-ordinates of the iodine atom were determined initially from twodimensional Patterson syntheses along the a- and the c-crystal axes. These projections are shown in Figs. 5 and 6.

- ¹¹ Bartell and Bonham, J. Chem. Phys., 1957, 27, 1414.
- ¹² Davies and Blum, Acta Cryst., 1955, 8, 129.
- ¹³ Trotter, Acta Cryst., 1960, 13, 86.
- 14 Chu, Jeffrey, and Sakurai, Acta Cryst., 1962, 661.
- ¹⁵ Cunningham, Boyd, Myers, Gwinn, and Le Van, J. Chem. Phys., 1951, 19, 676.
 ¹⁶ Erlandsson, Arkiv Fysik, 1955, 9, 341.
- ¹⁷ Paul, Sim, Hamor, and Robertson, J., 1962, 4133.
- ¹⁸ Robertson, J. Sci. Inst., 1943, 20, 175.
- ¹⁹ Tunell, Amer. Min., 1939, 24, 448.

TABLE 4.

Measured and calculated values of the structure factors.

h	k	1	$F_{\sigma} F_{r} = \alpha^{\circ}$	h k	1.	F_{o} F_{i} α°	h	k l	ŀ	$F_c = \alpha^\circ$	h	k	- 5	- F.,	$F_{c} \propto 2$	ħ	k	1.	F.,	$F_{1.} \propto^{2}$	h	k	1	F,,	$F_{1} \propto$
v	Ũ	4	48 57 0 24 23 0		6 7	50 48 270 13 16 270	1	2		14 17 90 32 188 141			7	82 31	81 85 37 82			8	57	45 71 41 206			7	10	5 338
o	1	10	42 45 180 94 157 90		8 10	43 46 270 21 21 270		4	2 1	62 158 353 96 73 182	1	14	í	75 64	80 19 67 207			10 11	17 46	19 45 24 121	2	18	0	41	40 0 37 201
		23	52 61 270 242 278 90	0 14	11 0 1	41 47 90		1		96 73 333 18 8 203			3	19 45	29 28 51 193	2	5	0 1	51 35	50 180 31 197			23	16 48	18 26
		4	10 4 90 72 73 90		2	29 28 180 70 75 0		ļ	5 1	58 136 21 34 33 226			õ	72 39	59 3 41 182			23	129 43	84 277 37 240			4	14	9 342 58 197
		67	53 49 270 10 22 270		3	72 77 0 55 59 0		8	3	69 70 346 44 41 0	1	15	8 0	35 100	37 177 77 90			4	131 80	98 260 74 194			67	32 31	36 72 36 177
		8	51 51 90 51 54 270		5 7	69 82 0 54 56 0		10		37 43 10 31 26 44			1 2	14 92	20 316 93 78			6 7	64 39	75 265 39 170	2	19	ė	38 34	18 122 29 0
		10 11	26 15 270 58 51 270		9 10	38 43 0 25 28 180	1	3 (43 51 270 80 86 260			3	25 21	28 318 33 108			8 10	64 51	63 287 60 263			1 2	34 27	32 100 21 316
0	2	1 2	43 22 180 162 143 180	0 15	1 2	72 70 90 46 46 90		2	2 10	88 169 269 21 132 119			56	27 15	36 288 25 116	2	6	11 0	15 21	23 178 17 0			3	35 45	29 123 46 285
		3	26 29 180 64 72 180		3	30 30 90 68 76 90		4		82 74 271 86 84 96	ì	16	7 0	29 20	35 255 33 90			1 2	57 25	48 337 22 252			5	14 43	30 168 48 254
		57	55 57 180 46 47 180		6 8	66 76 90 37 42 90				24 18 347 96 90 104			1 2	95 15	89 184 20 92			3	76 46	67 2 45 282			78	10 26	1 141 35 289
		8 10	20 11 0 38 32 0	0 16	10	25 29 90 65 50 180		6	3 4	20 30 120 47 49 73			3	71 22	77 176 25 48			õ	92 36	85 5 34 250	2	20	0	56 10	52 180 13 28
с	3	11 1	35 41 180 69 59 270		1	41 38 180 26 27 180		10		17 18 81 25 19 80			5	16 16	19 197 13 72			7 8	60. 12	68 14 17 266			23	24 32	24 210 36 27
		23	15 28 270 21 18 270		3	60 61 180 61 69 180	1	4 0	1 10	42 53 270 62 167 351	1	17	0 1	85 15	89 270 15 189			9 11	34 10	44 352 27 28			4	25 18	30 198 25 28
		4	142 142 270 62 56 270		7 8	62 66 180 14 21 0		2	2 10	01 98 222 03 77 38			23	100 22	91 269 19 163	2	7	0 1	5 38	2 180 49 290	2	21	1	67 36	51 279 34 152
		6 7	98 85 270 21 19 270	0 17	2	29 42 180 21 8 270		4		54 61 173 72 60 354	1	18	4	42 22	45 281 20 270			23	40	33 156 40 277			35	37 21	34 254 26 284
		8 10	92 90 270 48 44 270		4	61 66 270 13 13 270				34 26 170 13 21 110			1	22	82 12 23 354			4	56 40	59 123 36 337	2	22	0	37 18	28 0 17 278
0	4	0 1	18 8 180 55 60 0		8	65 71 270 46 52 270		ę		38 36 187 27 15 1 22			4	66 16	68 4 21 55			6 7	80 14	77 109 10 67			23	68 23	63 4 19 278
		2	72 71 0 166 173 0		10	15 21 90 15 31 270		10		17 16 190 31 33 164	1	19	5	34 77	36 351 75 90			9	66 10	65 71 22 12	2	22	4 5	28 10	27 2 14 220
		4 5	80 71 0 137 148 0	0 18	1	21 27 180 51 47 0	1	5 (94 123 90 76 67 52			3	59 17	55 81 16 96			10 11	23 15	55 113 6 109	2	23	0	50 69	41 0 54 75
		9	110 96 C 60 62 0		2	28 21 180 53 48 0		2	2 12	28 136 115 46 38 66			- 4-	42 35	45 78 38 74	2	8	1	73 121	124 220	2	24	5	15 43	19 63 39 180
0	5	11	20 25 0 94 91 90		5	19 18 180 36 39 0		4		87 86 92 35 33 308	1	20	2	41 24	34 176 23 187			3	99 65	62 202	2	2 5	2	38 10	36 161 8 180
		34	47 35 90 123 121 90		8	15 22 0		1		55 51 68 19 45 26 3		-0	34	45	46 144			5	49 53	47 191	2	26	1	27 37	24 280 32 0
		7	144 139 90 15 21 90		10	14 13 0		10		21 20 262 38 36 256		20	6	25	30 182			7	49	58 189	2	27	2	21 14	13 342 17 120
		10	67 74 90 69 64 90	0.18	ŝ	13 15 90	1	6 0		25 19 203 15 22 90	1	21	3	63	57 244			10	20	20 157	2	28 29	2	18 14	21 215 17 302
0	6	0	14 16 270 41 45 180		4	70 04 270 33 35 90	1	6 2	1	74 173 166 19 46 102	,		6	26	27 265	2	y	1	55	68 81	2	30 31	1	14	17 180 15 287
		2	47 48 180 7 14 0		6	45 50 90		4		6 51 108	1	e e .	2	40	48 341			3	96	90 108	2	32	2	12 25	15 0 21 350
		4	47 25 0	0.20	ŝ,	15 30 90		ě		15 35 159	,		6	45	51 355			5	24	36 125	2	22 34	0	13	18 180
		7	160 118 18 0	0 20	1 2	30 30 180		é		33 30 213	1	2)	ž	36	37 116			7	26	17 161	3	0	1	53	46 90
		.9	70 78 180		3	14 13 180		10		24 27 320	1	24	ó	14	7 270			10	28	32 233			3	41	23 90
0	7	1	31 33 90 59 59 270		56	51 61 180	1	7 1		58 97 270			3	18	22 1	2	10	0	152	153 180			ş	22	44 270
		4	103 84 270		ž	39 49 180		a a	1	34 138 281	ı	25	5	18	25 30			2	43 30	50 203			7	36	43 270
		67	82 81 270	0 21	í	61 51 90 14 11 270		4		87 89 265	-		2	30 31	37 120 29 266			á	53	53 185	-	,	10	12	20 0
		8	80 90 270		3	58 53 90		é		1 35 294	1	26	í	40	41 173			ź	23	21 345	,	1	ĩ	48	52 130
		10	57 59 270		56	14 17 90 15 19 270		é		26 28 99	1	27	0	31 34	30 270 37 276	2	11	Ó	11	11 180 84 271			3	35	31 117
0	8	0	58 60 180 88 110 0	0.22	7	25 19 90 58 46 180		10		35 38 103	1	28 29	1	44 31	41 351 33 90			23	31 86	44 172			5	47	43 97
		23	80 90 180 14 14 0		1 2	28 27 180 59 46 180	1	8 1	12	4 150 348	1	30	2	29 23	30 80 25 172			4 5	20 36	29 203 39 276			7	51	55 70
		4	20 7 0 31 34 0		3	29 26 0 38 39 180		1	12	5 106 353 0 56 1	1	31	0 2	14 15	17 270 18 266	2	12	9 0	20	19 110 116 0			10	37	43 81
		67	60 50 180 41 48 0	0 23	6	15 15 180 59 55 270		Ĩ		27 31 57	2	0	0 1	199 17	171 180 1 90			1 2	61 63	54 304 78 347	3	2	0	44	55 270
		8	12 13 0 47 48 0		23	20 18 90 46 43 270		1		14 19 341 44 43 5			23	108 56	106 180 61 90			3	20 64	19 287 68 346			23	42 107	37 253 64 61
		10 11	28 32 0 20 34 0		4	33 35 270. 25 21 270		10		33 30 187 25 32 357			4 6	· 48 14	40 180 24 180			56	23 15	21 276 18 327			4 5	116	77 168 25 91
0	9	1 2	133 148 270 42 41 270	0 24	0 1	60 58 0 15 9 0	1	9 0		26 30 182 17 121 90			10 11	44 10	44 0 31 270			7 8	16 17	20 331 25 178			67	38 32	46 200 42 80
		3	127 138 270 26 24 90		23	46 37 0 39 32 0		2		22 24 195 76 88 70	2	1	0 1	27 109	58 180 105 277	2	13	0	30 89	34 0 86 95			8	31 33	27 178 32 136
		56	74 73 270 51 59 90	0 25	4 -	46 44 0 53 37 90		4		24 49 114 48 52 55			23	56 135	52 236 132 243			23.	5 2	8 34 55 81	3	3	10	21 21	28 122 38 90
		7. 8	26 27 90 40 45 90		3	46 33 90 25 27 90		i		53 77 79 56 48 43			5	57 84	59 210 71 291			4	39 35	45 34 34 25			1 2	43 99	29 319 79 99
		11	13 34 90 15 24 90	0 26	2	53 52 180 21 14 180		Ē		33 47 97 16 15 338			67	51	39 304 14 146	_		8	16 20	25 90 27 79			34	67 77	51 295 85 145
c	10	1	201 214 0 55 60 180	0 27	2	14 16 180 20 17 270		10	8	53 57 87 17 24 288			9	49	42 116	2	14	1	44	44 180 18 107			5	62 29	54 313 29 135
		3	80 139 0 60 58 180	0 28	2	11 1 180 14 15 90	1	10 0		21 23 90 38 40 161	2	2	0	126	181 0			3	46 37	42 166	3	3	8	56 22	56 278 22 240
		5	59 64 180	0 50	2	16 19 0 16 15 0		2		27 51 181			2	176	134 30			5	32	47 160			10	12	28 239 15 215
		8	17 9 180	0 32	0	16 17 180		4		67 79 167 62 62 112			4	32	42 350		14	7	. 40	43 174	و	4	1	54	20 90 57 178
		10	35 37 180	0 33	1	17 26 270		3		40 40 76			6	47	38 297	2	16	20	15	21 178			3	29	68 206
٥	11	1	141 140 90	0 36	2	24 29 0	1	n ğ		53 42 90			9	33	38 16	2	1)	ĭ	54	54 271			5	22	16 196
		3	99 115 90	1 0	1 1	72 179 90		ą		20 24 237	2	23	ĩĭ	10 70	19 350 74 0			3	19 36	25 220			7	42	31 269
		5	34 33 90 66 58 270		4 1	55 153 180		4	Í	46 44 .137	-	-	12	140	101 79			5	20 34	25 227	3	5	10	17	31 270
		ž	12 12 90 13 8 270		б 7	94 96 180 39 40 90	'n	11	Ś	69 79 269			34	36 38	36 67 41 89			78	26 37	39 195 45 272			2	76	68 280
		9 11	24 27 270		10	72 67 180 24 37 180	î	12	í.	48 39 90 49 42 167			56	20 105	25 44 70 78	2	16	9 0	18 56	22 108 49 0			4	28	32 283 26 135
0	12	- ô	29 30 180 75 66 180	1 1	11 0	39 38 90 29 27 90		2		58 67 341			7	- 16 57	iz 110 46 65	-		ĩ	22	13 5 21 338			Ĩ	28	18 251
		23	100 115 180 45 43 0	īī	1 1 2 1	24 114 210 39 132 102		ž		88 96 6 20 20 98			9 10	29 14	31 341 29 114			3	40 20	47 342 26 268			9 10	24 12	23 132
		46	43 52 180 37 34 180		3 1 4 1	05 105 279 10 93 105		ę	5	98 100 357 16 19 188	2	4	11 0	14 25	45 276 12 0			56	34 14	42 354 10 111	3	6	0	63 92	70 270 102 3
0	12	10	29 23 0 15 14 180		56	97 85 265 42 40 249	1	13 0		53 55 15 27 26 270			1 2	26 98	12 52 84 126			7 8	29 23	43 2 35 284			23	59 65	55 299 48 330
0	19	2	118 107 270 74 84 270		7 1	05 99 278 14 22 200		1		50 51 145 57 58 251			4	62 70	58 136	2	17	9	23 48	35 6 42 180			4 5	26 40	29 288 29 350
		4	35 34 270		10	29 34 177		2	î j	59 67 92 31 27 276			ŝ	37	42 82			4	42	51 104			6 8	47 23	44 <i>333</i> 15 179

	TABLE 4. (Continued.)														
α° 13 156	h 4	k 1	/	Fo 24	F_{c}	α° 0	h k 4 10	/	F., 59	F _c 58	α° 0	h	k		

h	k	i	F_{α}	$F_c = \alpha^\circ$	h k	1	F_{o}	$F_c = \alpha^\circ$	h	k	7	F_{o}	$F_c = \alpha^\circ$	h	k	1	F_{α}	F_c	α°	h	k	l	F_{α}	F_c	α°	h	k	l	F_{ii}	F_{c}	α°
3	7	10 0	31 98	31 19 107 90		6	26 54	33 156 60 271	4	1	0	24 42	44 0 41 85	4	10	0 1	59 39	58 39	270			11 12	11	12	269 352			6	24 11	32 12	192 181
		12	37 86	51 1 85 90	3 14	9	22	26 276			23	50 42	45 321 36 90	4	10	2	29 40	34 38	3	5	3	0	16 16	20	90 167	£	12	9 2	13	8	293
		3	81 68	70 47		ź	42	40 35			á	34	36 1 11 97	-		á	20	18	26			ŝ	11	- 9	209	• 2	12	3	12	12	317
		56	3	8 37		6	43	44 35			ź	15	6 185		••	6	32	23	158			4	36	33	331	-		5	26	28	294
		8	20	24 312	3 15	6	10	23 270	4	2	ő	14	36 180	4	11	1	32	31	.97			10	17	16	36	5	13	2	15	11	340
		10	25	22 279		2	39	38 260			3	46	37 66			3	20	28	82	5	4	0	29	41	270			5	15	20	152
و	8	1	42	59 183		4	30	29 267	4	2	2	28	20 157	4	12	ì	14	31	105			2	28	23	272	5	14	0	27 12	30	270 299
		3	42 76	41 110 70 157		5	23 12	27 94 13 358			6 8	39 28	29 121 24 65			23	31 25	38 23	198 129			8	13 19	18	74 251			23	15 12	10 21	275 41
		4	28 30	26 119 29 120	3 16	7 0	18 24	21 130 22 270	4	3	8	17 23	20 196 37 180			5	22 28	11 27	57 115			9 12	11	12	155 70			4	14 10	18 18	209 118
		6 7	42 40	35 167 35 74		1 2	60 46	60 4 44 243			1 2	29 34	37 245 27 217	4	13	0	14 25	28 33	180 246	5	5	0	20 17	27	90 348	5	15	Ó 1	17 25	20	90 341
		8	37 37	39 235 27 1		3	11	26 16 20 254			3	35	32 203 36 216			2	21 15	26	202			2	37	34	109			Ž	15	15	102
3	9	ó	80	81 270 37 164	3 16	56	43	43 343			5	33	35 228		14	4	22	33	204			- á	15	18	46	5	16	í	15	12	171
		2		24 194	3 17	Ž	13	18 185			ž	26	26 174	-		i	21	26	270			7	13	7	4			3	.9	12	159
		4	29	29 237	11	ĭ	47	41 338	4	4	ź	40	33 342			3	22	22	303	5	6	õ	17	26	90			5	12	4	296
		6	23	21 154		3	20	24 26			4	36	31 290	4	15	1	31	21	86			ź	30	36	60			10	10	7	284 284
		, 8	12	29 287 16 200	3 18	4	29	30 90			6	46 28	43 332 21 256			3	23	28 19	67			3	36 23	35 17	177	5	17	1 5	26 12	31 12	181 119
3	10	. 0	29	22 90		2	42 17	45 154 26 105			7 8	- 30 - 32	29 354 30 269	4	16 17	2	32 24	18 19	180 324			6	10 14	10	78 86	5	18	8	15 21	8 18	64 270
		2	26 15	24 298 33 342	3 19	3	50 44	49 182 46 270	4	5	0	19 31	25 73	4	18 19	0	20 18	13 21	0 318			8	13	12	296			2	12	11	235
		3	32 55	32 324 54 2		1	12 12	21 186 15 248			2	55	50 59	4	20	2	21 21	21	197 50	E,	7	10	14	6	347 270	5	10	9	13	10	235
		56	14 30	18 344 35 335	3 20	1	28 25	23 9 23 340			4	49	35 121	4	21	ō	25	22	275		÷.	1	12	29	168	,	19	ĩ	19	10	24
		7	36	33 264 44 4	3 21	- Á	22	26 358			6	25	28 104	4	24	õ	16	15	273			ž	ĩí	18	201			3	16	17	1
		9 10	18	23 250) 21	2	36	29 74			8	28	32 71			2	26	24	327			6	13	ģ	245			6	16	12	347
3	11	õ	ź	20 270	3 22	ò	22	15 270	4	6	1	43	29 271	4	27	2	18	1	276	_		8	15	19	114	2	20	2	16	15	109
		ź	20	30 54		3	22	27 91			3	52 35	36 115 36 184	5	0	1	27	20	180	5	8	2	11 26	- 9 30	270 306			3	17 12	17	147 244
		4	41	33 349	3 23	3	28 31	25 167 30 269			5	48 41	42 185 43 65			4	40 23	36 24	90 180			3	11	25 25	299	5	20	7	12	14	64
		ê	35	37 35	3 24 3 25	0	12 18	8 90 24 270			79	35 30	20 270			5	11	21 28	90 180			5	24 13	21	270	5	21	4	12	15	169
		8	48 30	28 356	3 26	1	23 15	22 140 16 270	4	7	1	21 33	24 140 24 328			9 11	16 10	6	90 90	5	9	8	13 37	16 24	236 90	5	22	1	18	12	203 327
		9 10	18 18	24 76 24 9		12	22 19	22 354 22 271			3	20	24 176 34 306	5	1	0	8 7	25	90 343			1	23	27	39 128	5	23	2	12 14	15	49 37
3	12	0	29 33	24 270 27 85	3 27.	Ö	20	23 90 19 341			5	43	46 156			2 3	14	25	215	5	a	4	10	17	47	55	24 25	3	10 11	13	69 329
		23	21	28 192 38 50	3 30	2	27	26 93	4	8	ŏ	40	31 180			4	20	23	167	. 1	,	6	14	16	331	5	26	Ô	14	11	90
		4	40	51 199 37 73	3 20	ĭ	15	16 176			2	33	28 182			6	23	19	184	5	10	õ	8	10	270	6	2	2	12	12	0
		é	51	50 168	3 30	2	12	6 260			4	13	27 236			8	12	15	181			2	13	15	109	ĕ	4	ě	Ĩ	14	180
		8	25	28 148	3 32	ő	8	4 90			9	21 5	27 275 36 320	5	2	10	13	11	179 90			3	26 16	32 22	96 199	6	6	0	6	5	2/1
3	13	ő	30	37 90	4 0	1	67 35	53 270	4	9	0	31 31	39 180 36 275	5	2	12	32 13	27 18	275			7 8	15 17	22 19	95 190	6	8	ő	.8	3	180
		2	10 28	10 47 31 94		2 5	43 51	50 0 36 270			23	39 34	40 181 31 282			3	18 9	7 20	155 45	5	11	9 1	18 12	11	62 321	6	9 11	0	12 11	30 24	180
		3	52 26	61 296 36 180		6	24 16	1 180 7 180			4	14	13 173 23 342			5	23 2)	22 27	268			23	13	16	215	6	12 24	0	9 4	7	180 180
		5	27	23 273		9	24	9 90			6	27	28 87			7	27	28	272			ś	18	23	314	7	2	0	9	11	270

The first three-dimensional Fourier synthesis was evaluated with the measured values of the structure amplitudes and the phase constants appropriate to the iodine atom alone. The approximately centrosymmetrical arrangement of the iodine atoms in the unit cell led to spurious planes of symmetry in the electron-density distribution and no clear details of the molecular structure could be discerned.

Improved co-ordinates were obtained for the iodine atom, and an electron-density distribution based on the revised phase angles was calculated; because of the spurious symmetry and high temperature factor the peaks were rather diffuse. Nine of the most prominent peaks were selected as atoms and were included (all as carbon atoms) in the calculation of a third set of structure factors. The value of R, the average discrepancy between calculated and observed structure amplitudes, fell from the previous value of 43% to 35.7%.

A third electron-density distribution was then computed and co-ordinates were assigned to a further ten peaks. When structure factors were calculated on the basis of the iodine atom and nineteen carbon atoms, the value of R decreased to 34.9%. The improvement was disappointingly small and it seemed that some of the peaks we had selected could not represent genuine atoms. We therefore plotted the co-ordinates of these nineteen peaks on a twodimensional electron-density distribution based on the iodine phases. Five of the atoms fell on regions of rather low electron-density and were omitted from the next structure-factor calculation which was based, therefore, on the iodine atom and fourteen carbon atoms. The value of R was 33.9%.

On examining the subsequent three-dimensional electron-density distribution it was realised that a rather distorted six-membered ring was not of the cyclohexane type but was actually a cyclopentane ring bearing a 1,2-epoxide. The biogenetic relation to limonin^{4,7} (III) was

immediately evident and the location of the remaining atoms was straightforward. The iodine atom, twenty-three carbon atoms, and five oxygen atoms were employed in the next calculation of structure amplitudes and phase constants, and the value of R fell to 29.6%.

In the next three-dimensional electron-density distribution all the atoms were clearly resolved and the correct chemical type could be assigned to each atom except in the furan ring where the choice of oxygen atom was still not unique.

Two further rounds of structure-factor and Fourier calculations were carried out. Both F_o and F_c maps were computed, errors due to termination of series were corrected, and individual isotropic temperature factors were assigned. The value of R was reduced to 20.4%.

The refinement was completed by performing four cycles of least-squares adjustment of the

FIG. 5. Patterson projection along the *a*-axis. Contour scale arbitrary.

FIG. 6. Patterson projection along the *c*-axis. Contour scale arbitrary.

positional and thermal parameters of the atoms; the programme employed was that devised by Dr. J. S. Rollett.²⁰ The final value for the discrepancy factor R is 17.5% over all the observed structure amplitudes.

During the refinement all the atoms of the furan ring were weighted as carbon atoms. An examination of the bond lengths in the ring, the intermolecular contacts involving the ring, the temperature factors given by the least-squares refinement, and the peak heights led us to favour the oxygen assignment defined in Table 1 and Fig. 2. However, the alternative assignment, C(23) an oxygen atom and O(5) a carbon atom, cannot be completely excluded. It is possible that there is some disorder associated with the orientation of the furan ring in the crystal, the alternative assignments of the oxygen atom representing orientations of the furan ring related by rotation through 180° about the single bond C(17)-C(20).

The theoretical atomic scattering factors employed in the structure-factor calculations were

²⁰ Rollett, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 87.

[1963]

those of Berghuis *et al.*²¹ for carbon and oxygen, and the Thomas–Fermi values ²² for iodine. The final atomic co-ordinates are in Table 1, the molecular dimensions and some non-bonded distances in Table 2, and the final values of $|F_o|$, $|F_c|$, and α in Table 4.

The standard deviations of the final atomic co-ordinates were derived from the leastsquares residuals by application of the equation

$$\sigma^2(x_i) = \sum w_j (\Delta F_j)^2 / [(n-s) \sum w_j (\partial F_j / \partial x_i)^2].$$

The results are listed in Table 3.

As some doubt was felt about the physical significance of the anisotropic temperature factors derived for the carbon and oxygen atoms, we have not listed these parameters here but give in Table 1 an equivalent isotropic temperature factor for each atom deduced from the anisotropic thermal parameters; the anisotropic temperature factors have been listed elsewhere by Grant and Hamilton.²³ An examination of the anisotropic parameters showed that the average apparent thermal vibration of the atoms is considerably greater in the *a*-direction $(\vec{B}_{11} = 7 \cdot 1 \text{ Å}^2)$ than in the *b*- or *c*-direction $(\vec{B}_{22} = 4 \cdot 9 \text{ Å}^2, \vec{B}_{33} = 4 \cdot 3 \text{ Å}^2)$. The large value of \vec{B}_{11} is undoubtedly connected with the rapid decline in intensity values with increasing sin θ mentioned earlier.

The final three-dimensional electron-density distribution was evaluated on the basis of the phase constants in Table 4 and is shown in Fig. 1 by means of superimposed contour sections drawn parallel to (001). The corresponding atomic arrangement is illustrated in Fig. 2.

The extensive calculations were performed on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. We are indebted to the Department of Scientific and Industrial Research for maintenance grants (to I. J. G. and J. A. H.), to the University of Glasgow for an I.C.I. Research Fellowship (to T. A. H.), and to Dr. R. Hodges, Mr. S. G. McGeachin, and Professor R. A. Raphael, F.R.S., for supplies of cedrelone iodoacetate.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW, W.2. [Received, September 28th, 1962.]

²¹ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ²² "Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, Vol. II, p. 572.

²³ Hamilton, Ph.D. Thesis, University of Glasgow, 1962; Grant, Ph.D. Thesis, University of Glasgow, 1962.

2515