463. The Structure of Cedrelone: X-Ray Analysis of Cedrelone Iodoacetate. ${ }^{1}$

By I. J. Grant, Miss J. A. Hamilton, T. A. Hamor, J. Monteath Robertson, and G. A. Sim.

In order to determine the molecular structure of cedrelone, the principal crystalline constituent of the heartwood of Cedrela toona, we have carried out a crystal-structure analysis of the heavy-atom derivative, cedrelone iodoacetate. The crystals are orthohombic, space group $P 2_{1} 2_{1} 2_{1}$, with four molecules of $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{IO}_{8}$ in the unit cell of dimensions $a=6 \cdot 97, b=27 \cdot 44$, $c=13.74 \AA$. Phase determination was based initially on the iodine atom, and Fourier and least-squares refinement methods were employed in the determination of the atomic co-ordinates. Our final results define the constitution and relative stereochemistry of cedrelone iodoacetate to be as in (I); cedrelone is therefore assigned formula (II).

Cedrelone, the principal crystalline constituent of the heartwood of the Indian tree Cedrela toona, was first isolated by Parihar and Dutt, ${ }^{2}$ who favoured the molecular formula $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}$ and reported the presence of a lactone ring, a phenolic hydroxyl and a ketone group, and an ethylenic double bond. Later chemical and spectroscopic work at Glasgow, ${ }^{1}$ Madras, ${ }^{3}$ and Zurich ${ }^{3}$ showed that the correct molecular formula is $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{5}$ and that the molecule contains an $\alpha \beta$-unsaturated ketone, a β-monosubstituted furan ring, and an

[^0]enolised α-diketone grouping similar in environment to that of diosphenols in the limonin series. ${ }^{4}$

No further chemical information about cedrelone was available to us when we began an X-ray analysis of cedrelone iodoacetate, ${ }^{5}$ and a direct determination of the crystal structure of this derivative was effected by means of the usual phase-determining heavyatom method. ${ }^{6}$ A number of three-dimensional electron-density distributions were evaluated, and this was followed by least-squares refinement of the positional and thermal atomic parameters. At the end the value of R, the average discrepancy between measured and calculated structure amplitudes, was 17.5% over 1163 reflexions.

Our final results establish the constitution and stereochemistry (apart from absolute configuration) of cedrelone iodoacetate to be as in (I); it follows that cedrelone is represented by formula (II). The independent chemical studies at Glasgow, ${ }^{1,5}$ Madras, ${ }^{3}$ and Zurich ${ }^{3}$ are consistent with this structure. Cedrelone, like limonin ${ }^{4,7}$ (III) and

(II)

(III)
(IV)

gedunin ${ }^{8,9}$ (IV), is clearly a triterpenoid of the euphol ${ }^{10}$ (V) type and its biogenesis presumably follows the route proposed for limonin. ${ }^{4}$

The final electron-density distribution for cedrelone iodoacetate is shown in Fig. 1 as superimposed contour sections drawn parallel to (001) and covering the region of one molecule; the corresponding atomic arrangement is illustrated in Fig. 2. The interatomic distances and valency angles calculated from the final atomic co-ordinates (see Table 1) are listed in Table 2. The standard deviations of the final atomic co-ordinates were estimated in the usual manner from the least-squares residuals (see Experimental section) and are shown in Table 3; from the results the average estimated standard deviation (e.s.d.) of a carbon-carbon bond is about $0.09 \AA$ and of a carbon-oxygen bond about $0.07 \AA$. The average e.s.d. of a valency angle is about 4°.

The average carbon-carbon single-bond length is $1.55 \AA$, in good agreement with the value of $1.545 \AA$ in diamond. The average carbon-carbon double-bond length, $1.35 \AA$,

[^1]

Fig. 1. The final three-dimensional electron-density distribution for cedrelone iodoacetate shown by means of superimposed contour sections drawn parallel to (001) and covering the region of one molecule. Contour interval $1 \mathrm{e} \AA^{-3}$, starting from the $2 \mathrm{e}^{-3}$ level, except around the iodine atom where the interval is $5 \mathrm{e}^{-3}$.

Fig. 2. The arrangement of atoms corresponding to Fig. 1.

Table 1.
Atomic co-ordinates and isotropic temperature factors.
(Origin of co-ordinates as in " International Tables." *)

Atom	x / a	y / b	z / c	B	Atom	x / a	y / b	z / c	B
C(1)	-0.3157	-0.0520	$0 \cdot 1550$	$4 \cdot 5$	$\mathrm{C}(19)$	0.0544	-0.0578	$0 \cdot 1154$	$4 \cdot 3$
C(2)	-0.3783	-0.0957	$0 \cdot 1406$	$4 \cdot 9$	$\mathrm{C}(20)$	$-0 \cdot 1626$	$0 \cdot 2006$	$0 \cdot 3251$	$5 \cdot 7$
C(3)	-0.2634	-0.1337	$0 \cdot 1687$	$6 \cdot 6$	$\mathrm{C}(21)$	-0.2756	$0 \cdot 2147$	$0 \cdot 4005$	$8 \cdot 3$
C(4)	-0.1512	-0.1311	$0 \cdot 2654$	$4 \cdot 1$	$\mathrm{C}(22)$	-0.3139	$0 \cdot 2093$	$0 \cdot 2532$	$6 \cdot 4$
C(5)	-0.0985	-0.0781	$0 \cdot 2787$	3.9	C(23)	-0.4079	$0 \cdot 2487$	$0 \cdot 2789$	$8 \cdot 9$
C(6)	-0.0131	-0.0596	$0 \cdot 3679$	$4 \cdot 3$	C(28)	-0.2911	-0.1504	$0 \cdot 3437$	$6 \cdot 1$
C(7)	$0 \cdot 0318$	-0.0086	$0 \cdot 3925$	$5 \cdot 8$	C(29)	$0 \cdot 0410$	-0.1861	$0 \cdot 2702$	$7 \cdot 5$
C(8)	$0 \cdot 0840$	0.0183	$0 \cdot 2986$	$3 \cdot 4$	C(30)	$0 \cdot 2710$	$0 \cdot 0030$	$0 \cdot 2637$	$4 \cdot 5$
$\mathrm{C}(9)$	--0.0851	0.0093	$0 \cdot 2311$	3•1	$\mathrm{C}(31)$	$0 \cdot 1412$	-0.1035	$0 \cdot 4855$	$5 \cdot 7$
$\mathrm{C}(10)$	-0.1186	-0.0424	0-1949	$6 \cdot 0$	$\mathrm{C}(32)$	$0 \cdot 1435$	-0.1425	$0 \cdot 5768$	$5 \cdot 6$
C(11)	-0.0764	$0 \cdot 0460$	$0 \cdot 1412$	6.7	$\mathrm{O}(1)$	-0.2808	-0.1767	$0 \cdot 1316$	$7 \cdot 8$
C(12)	-0.1651	0.0958	$0 \cdot 1854$	$5 \cdot 7$	$\mathrm{O}(2)$.	- 0.0223	-0.0932	$0 \cdot 4444$	$5 \cdot 0$
C(13)	-0.0779	$0 \cdot 1067$	$0 \cdot 2925$	$4 \cdot 5$	O (3).	$0 \cdot 0597$	0.0047	$0 \cdot 4678$	$5 \cdot 0$
C(14)	0.0798	$0 \cdot 0744$	$0 \cdot 3175$	$3 \cdot 8$	$\mathrm{O}(4)$.	$0 \cdot 2559$	0.0974	$0 \cdot 2779$	$4 \cdot 0$
$\mathrm{C}(15)$	$0 \cdot 0235$	$0 \cdot 1024$	$0 \cdot 3824$	$4 \cdot 8$	$\mathrm{O}(5) \ldots .$.	-0.3849	0.2467	$0 \cdot 3740$	$8 \cdot 3$
$\mathrm{C}(16)$	$0 \cdot 1063$	0.1495	$0 \cdot 3960$	$5 \cdot 5$	$\mathrm{O}(6) \ldots .$.	$0 \cdot 2847$	-0.0888	$0 \cdot 4452$	$5 \cdot 9$
$\mathrm{C}(17)$	-0.0109	$0 \cdot 1585$	$0 \cdot 3085$	$4 \cdot 6$	T	$0 \cdot 2808$	-0.2054	$0 \cdot 5353$	$6 \cdot 0$
C(18)	-0.2785	0.0931	$0 \cdot 3694$	$3 \cdot 4$					

* "International Tables for X-Ray Crystallography," The Kynoch Press, Birmingham, 1952, Vol. I.

Table 2.
Interatomic distances (\AA) and angles.
Intramolecular bonded distances

$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 29$	$\mathrm{C}(6)-\mathrm{C}(7)$	1.48	$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 62$	$\mathrm{C}(17)-\mathrm{C}(20)$	1.58
$\mathrm{C}(1)-\mathrm{C}(10)$	1.50	$\mathrm{C}(6)-\mathrm{O}(2)$	$1 \cdot 40$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 62$	$\mathrm{C}(20)-\mathrm{C}(21)$	1.36
$\mathrm{C}(2)-\mathrm{C}(3)$	1.57	$\mathrm{C}(7)-\mathrm{C}(8)$	1.53	$\mathrm{C}(13)-\mathrm{C}(14)$	1.45	$\mathrm{C}(20)-\mathrm{C}(22)$	$1 \cdot 47$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.54	$\mathrm{C}(7)-\mathrm{O}(3)$	$1 \cdot 11$	$\mathrm{C}(13)-\mathrm{C}(17)$	1.51	$\mathrm{C}(21)-\mathrm{O}(5)$	$1 \cdot 22$
$\mathrm{C}(3)-\mathrm{O}(1)$	$1 \cdot 29$	$\mathrm{C}(8)-\mathrm{C}(9)$	1.52	$\mathrm{C}(13)-\mathrm{C}(18)$	1.79	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 31$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.51	$\mathrm{C}(8)-\mathrm{C}(14)$	1.56	$\mathrm{C}(14)-\mathrm{C}(15)$	1.55	$\mathrm{C}(23)-\mathrm{O}(5)$	$1 \cdot 32$
$\mathrm{C}(4)-\mathrm{C}(28)$	1.55	$\mathrm{C}(8)-\mathrm{C}(30)$	$1 \cdot 45$	$\mathrm{C}(14)-\mathrm{O}(4)$	1.48	$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 65$
$\mathrm{C}(4)-\mathrm{C}(29)$	1.65	$\mathrm{C}(9)-\mathrm{C}(10)$	1.52	$\mathrm{C}(15)-\mathrm{C}(16)$	1.54	$\mathrm{C}(31)-\mathrm{O}(2)$	$1 \cdot 30$
$\mathrm{C}(5)-\mathrm{C}(6)$	1.45	$\mathrm{C}(9)-\mathrm{C}(11)$	$1 \cdot 59$	$\mathrm{C}(15)-\mathrm{O}(4)$	$1 \cdot 46$	$\mathrm{C}(31)-\mathrm{O}(6)$	$1 \cdot 21$
$\mathrm{C}(5)-\mathrm{C}(10)$	1.52	$\mathrm{C}(10)-\mathrm{C}(19)$	$1 \cdot 68$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 47$	$\mathrm{C}(32)-\mathrm{I}$	$2 \cdot 05$
Intramolecular non-bonded distances							
$\mathrm{C}(1) \cdots \mathrm{C}(4)$	$2 \cdot 89$	$\mathrm{C}(6) \cdots \mathrm{C}(29)$	$3 \cdot 24$	$\mathrm{C}(10) \cdots \mathrm{O}(1)$	3.95	$\mathrm{C}(16) \cdots \mathrm{C}(22)$	$3 \cdot 89$
$\mathrm{C}(1) \cdots \mathrm{C}(11)$	3-17	$\mathrm{C}(6) \cdots \mathrm{C}(30)$	2.99	$\mathrm{C}(10) \cdots \mathrm{O}(2)$	$3 \cdot 76$	$\mathrm{C}(17) \cdots \mathrm{C}(23)$	$3 \cdot 74$
$\mathrm{C}(1) \cdots \mathrm{C}(28)$	$3 \cdot 75$	$\mathrm{C}(6) \cdots \mathrm{C}(32)$	$3 \cdot 82$	$\mathrm{C}(10) \cdots \mathrm{O}(3)$	$4 \cdot 15$	$\mathrm{C}(17) \cdots \mathrm{O}(4)$	$2 \cdot 54$
$\mathrm{C}(1) \cdots \mathrm{O}(1)$	$3 \cdot 44$	$\mathrm{C}(6) \cdots \mathrm{O}$ (6)	$2 \cdot 47$	$\mathrm{C}(11) \cdots \mathrm{C}(17)$	$3 \cdot 87$	$\mathrm{C}(17) \cdots \mathrm{O}(5)$	$3 \cdot 67$
$\mathrm{C}(2) \cdots \mathrm{C}(5)$	$2 \cdot 76$	$\mathrm{C}(7) \cdots \mathrm{C}(10)$	$3 \cdot 06$	$\mathrm{C}(11) \cdots \mathrm{C}(18)$	$3 \cdot 67$	C(18) \cdots C (20)	3.12
$\mathrm{C}(2) \cdots \mathrm{C}(9)$	$3 \cdot 74$	$\mathrm{C}(7) \cdots \mathrm{C}(11)$	$3 \cdot 84$	C(11) $\cdot \cdots$ C(19)	$3 \cdot 01$	C(18) \cdots C ${ }^{\text {(21) }}$	$3 \cdot 37$
$\mathrm{C}(2) \cdots \mathrm{C}(19)$	$3 \cdot 21$	$\mathrm{C}(7) \cdots \mathrm{C}(13)$	$3 \cdot 53$	$\mathrm{C}(11) \cdots \mathrm{C}(30)$	$3 \cdot 18$	C(18) \cdots C ${ }^{\text {(22) }}$	$3 \cdot 58$
$\mathrm{C}(2) \cdots \mathrm{C}(28)$	$3 \cdot 23$	$\mathrm{C}(7) \cdots \mathrm{C}(15)$	3.33	$\mathrm{C}(11) \cdots \mathrm{O}(4)$	$3 \cdot 30$	$\mathrm{C}(18) \cdots \mathrm{O}(3)$	$3 \cdot 64$
$\mathrm{C}(2) \cdots \mathrm{C}(29)$	$3 \cdot 93$	$\mathrm{C}(7) \cdots \mathrm{C}(18)$	$3 \cdot 54$	$\mathrm{C}(12) \cdots \mathrm{C}(15)$	3-83	$\mathrm{C}(18) \cdots \mathrm{O}(4)$	3.93
$\mathrm{C}(3) \cdots \mathrm{C}(6)$	$3 \cdot 83$	$\mathrm{C}(7) \cdots \mathrm{C}(31)$	3.00	$\mathrm{C}(12) \cdots \mathrm{C}(16)$	$3 \cdot 76$	$\mathrm{C}(19) \cdots \mathrm{C}(29)$	3.65
$\mathrm{C}(3) \cdots \mathrm{C}(10)$	$2 \cdot 72$	$\mathrm{C}(7) \cdots \mathrm{O}(4)$	$3 \cdot 66$	$\mathrm{C}(12) \cdots \mathrm{C}(20)$	$3 \cdot 45$	$\mathrm{C}(19) \cdots \mathrm{C}(30)$	3.04
$\mathrm{C}(3) \cdots \mathrm{C}(19)$	$3 \cdot 13$	$\mathrm{C}(7) \cdots \mathrm{O}(6)$	$2 \cdot 91$	$\mathrm{C}(12) \cdots \mathrm{C}(22)$	$3 \cdot 41$	$\mathrm{C}(28) \cdots \mathrm{C}(31)$	$3 \cdot 81$
$\mathrm{C}(\mathbf{4}) \cdots \mathrm{C}(9)$	$3 \cdot 91$	$\mathrm{C}(8) \cdots \mathrm{C}(12)$	$3 \cdot 15$	$\mathrm{C}(12) \cdots \mathrm{O}(4)$	$3 \cdot 20$	$\mathrm{C}(28) \cdots \mathrm{O}(1)$	3.00
$\mathrm{C}(4) \cdots \mathrm{C}(19)$	$3 \cdot 22$	$\mathrm{C}(8) \cdots \mathrm{C}(16)$	$3 \cdot 84$	$\mathrm{C}(13) \cdots \mathrm{C}(21)$	$3 \cdot 59$	$\mathrm{C}(28) \cdots \mathrm{O}(2)$	$2 \cdot 81$
$\mathrm{C}(4) \cdots \mathrm{C}(31)$	3.72	$\mathrm{C}(8) \cdots \mathrm{C}(17)$	$3 \cdot 90$	$\mathrm{C}(13) \cdots \mathrm{C}(22)$	$3 \cdot 31$	$\mathrm{C}(29) \cdots \mathrm{C}(31)$	$3 \cdot 49$
$\mathrm{C}(4) \cdots \mathrm{O}(2)$	$2 \cdot 82$	$\mathrm{C}(8) \cdots \mathrm{C}(18)$	$3 \cdot 39$	$\mathrm{C}(13) \cdots \mathrm{C}(30)$	$3 \cdot 76$	$\mathrm{C}(29) \cdots \mathrm{O}(1)$	$2 \cdot 96$
$\mathrm{C}(5) \cdots \mathrm{C}(8)$	2.95	$\mathrm{C}(8) \cdots \mathrm{O}(2)$	$3 \cdot 74$	$\mathrm{C}(13) \cdots \mathrm{O}(3)$	$3 \cdot 82$	$\mathrm{C}(29) \cdots \mathrm{O}(2)$	$3 \cdot 15$
$\mathrm{C}(5) \cdots \mathrm{C}(11)$	3.90	$\mathrm{C}(9) \cdots \mathrm{C}(15)$	$3 \cdot 93$	$\mathrm{C}(14) \cdots \mathrm{C}(20)$	$3 \cdot 85$	$\mathrm{C}(29) \cdots \mathrm{O}(6)$	$3 \cdot 63$
$\mathrm{C}(5) \cdots \mathrm{C}(30)$	$3 \cdot 41$	$\mathrm{C}(9) \cdots \mathrm{C}(18)$	$3 \cdot 27$	$\mathrm{C}(14) \cdots \mathrm{O}(3)$	$2 \cdot 82$	$\mathrm{C}(30) \cdots \mathrm{O}(3)$	$3 \cdot 17$
$\mathrm{C}(5) \cdots \mathrm{C}(31)$	$3 \cdot 37$	$\mathrm{C}(9) \cdots \mathrm{O}(3)$	$3 \cdot 41$	$\mathrm{C}(15) \cdots \mathrm{C}(18)$	3.51	$\mathrm{C}(30) \cdots \mathrm{O}(4)$	$2 \cdot 60$
C(5) $\cdot \cdots \mathrm{O}(1)$	$3 \cdot 61$	$\mathrm{C}(9) \cdots \mathrm{O}(4)$	3.45	$\mathrm{C}(15) \cdots \mathrm{C}(20)$	$3 \cdot 89$	$\mathrm{C}(30) \cdots \mathrm{O}(6)$	$3 \cdot 55$
$\mathrm{C}(5) \cdots \mathrm{O}$ (3)	$3 \cdot 62$	$\mathrm{C}(10) \cdots \mathrm{C}(12)$	$3 \cdot 81$	$\mathrm{C}(15) \cdots \mathrm{C}(30)$	$3 \cdot 20$	$\mathrm{C}(31) \cdots \mathrm{O}(3)$	3.03
$\mathrm{C}(5) \cdots \mathrm{O}(6)$	3.53	$\mathrm{C}(10) \cdots \mathrm{C}(14)$	$3 \cdot 88$	$\mathrm{C}(15) \cdots \mathrm{O}(3)$	3-14	$\mathrm{O}(2) \cdots \mathrm{O}(3)$	$2 \cdot 76$
$\mathrm{C}(6) \cdots \mathrm{C}(9)$	$2 \cdot 71$	$\mathrm{C}(10) \cdots \mathrm{C}(28)$	$3 \cdot 79$	$\mathrm{C}(16) \cdots \mathrm{C}(18)$	$3 \cdot 12$	$\mathrm{O}(3) \cdots \mathrm{O}(4)$	$3 \cdot 89$
$\mathrm{C}(6) \cdots \mathrm{C}(19)$	$3 \cdot 50$	$\mathrm{C}(10) \cdots \mathrm{C}(29)$	$3 \cdot 72$	$\mathrm{C}(16) \cdots \mathrm{C}(21)$	$3 \cdot 21$	$\mathrm{O}(3) \cdots \mathrm{O}(6)$	3.02
$\mathrm{C}(\mathrm{f}) \cdots \mathrm{C}(28)$	$3 \cdot 17$	$\mathrm{C}(10) \cdots \mathrm{C}(30)$	$3 \cdot 13$				
Intermolecular distances ($<4 \AA$)							
$\mathrm{C}(32) \cdots \mathrm{O}(4)_{\text {I }}$	$3 \cdot 11$	$\mathrm{C}(23) \cdots \mathrm{C}(29)_{\text {IV }}$	3.53	$\mathrm{C}(32) \cdots \mathrm{C}(22)_{\text {III }}$	$3 \cdot 81$	$\mathrm{O}(5) \cdots \mathrm{C}(29)_{\text {IV }}$	3.92
$\mathrm{O}(5) \cdots \mathrm{O}(\mathbf{1})_{\mathrm{II}}$	$3 \cdot 14$	$\mathrm{O}(6) \cdots \mathrm{C}(11)_{\mathrm{I}}$	$3 \cdot 57$	$\mathrm{C}(23) \cdots \mathrm{C}(28)_{\text {II }}$	$3 \cdot 86$	$\mathrm{C}(22) \cdots \mathrm{C}(29)_{\text {IV }}$	3.93
$\mathrm{C}(23) \cdots \mathrm{O}(1)_{\text {II }}$	$3 \cdot 23$	$\mathrm{O}(3) \cdots \mathrm{C}(19)_{\mathrm{I}}$	$3 \cdot 67$	$\mathrm{C}(32) \cdots \mathrm{C}(12)_{\text {III }}$	$3 \cdot 87$	$\mathrm{O}(2) \cdots \mathrm{C}(12)_{\text {III }}$	3.96
$\mathrm{O}(3) \cdots \mathrm{C}(1)_{\mathrm{TII}}$	$3 \cdot 35$	$\mathrm{O}(3) \cdots \mathrm{C}(2)_{\mathrm{II}}$	$3 \cdot 67$	$\mathrm{C}(18) \cdots \mathrm{C}(2)_{\text {III }}$	3•88	$\mathrm{C}(20) \cdots \mathrm{C}(29)_{\text {IV }}$	3.98
$\mathrm{C}(21) \cdots \mathrm{O}(1)_{\text {III }}$	$3 \cdot 36$	$\mathrm{C}(15) \cdots \mathrm{C}(19)_{\text {I }}$	3.76				

The subscripts refer to the following positions:
$1 \frac{1}{2}-x,-y, \frac{1}{2}+z$. II $-1-x, \frac{1}{2}+y, \frac{1}{2}-z$. III $-\frac{1}{2}-x,-y, \frac{1}{2}+z$. IV $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Valency angles							
$\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(10)$	122°	$\mathrm{C}(6) \mathrm{C}(7) \mathrm{O}(3)$	$124{ }^{\circ}$	$\mathrm{C}(9) \mathrm{C}(11) \mathrm{C}(12)$	103°	$\mathrm{C}(15) \mathrm{C}(16) \mathrm{C}(17)$	110°
$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3)$	118	$\mathrm{C}(8) \mathrm{C}(7) \mathrm{O}(3)$	126	$\mathrm{C}(11) \mathrm{C}(12) \mathrm{C}(13)$	111	$\mathrm{C}(13) \mathrm{C}(17) \mathrm{C}(16)$	98
$\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4)$	120	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(9)$	104	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(14)$	113	$\mathrm{C}(13) \mathrm{C}(17) \mathrm{C}(20)$	120
$\mathrm{C}(2) \mathrm{C}(3) \mathrm{O}(1)$	122	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(14)$	110	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(17)$	115	$\mathrm{C}(16) \mathrm{C}(17) \mathrm{C}(20)$	112
$\mathrm{C}(4) \mathrm{C}(3) \mathrm{O}(1)$	115	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(30)$	110	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(18)$	102	$\mathrm{C}(17) \mathrm{C}(20) \mathrm{C}(21)$	135
$\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5)$	106	$\mathrm{C}(9) \mathrm{C}(8) \mathrm{C}(14)$	105	$\mathrm{C}(14) \mathrm{C}(13) \mathrm{C}(17)$	108	$\mathrm{C}(17) \mathrm{C}(20) \mathrm{C}(22)$	120
$\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(28)$	105	$\mathrm{C}(9) \mathrm{C}(8) \mathrm{C}(30)$	117	$\mathrm{C}(14) \mathrm{C}(13) \mathrm{C}(18)$	109	$\mathrm{C}(21) \mathrm{C}(20) \mathrm{C}(22)$	93
$\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(29)$	115	$\mathrm{C}(14) \mathrm{C}(8) \mathrm{C}(30)$	111	$\mathrm{C}(17) \mathrm{C}(13) \mathrm{C}(18)$	111	$\mathrm{C}(20) \mathrm{C}(21) \mathrm{O}(5)$	110
$\mathrm{C}(5) \mathrm{C}(4) \mathrm{C}(28)$	114	$\mathrm{C}(8) \mathrm{C}(9) \mathrm{C}(10)$	118	$\mathrm{C}(8) \mathrm{C}(14) \mathrm{C}(13)$	125	$\mathrm{C}(20) \mathrm{C}(22) \mathrm{C}(23)$	108
$\mathrm{C}(5) \mathrm{C}(4) \mathrm{C}(29)$	111	$\mathrm{C}(8) \mathrm{C}(9) \mathrm{C}(11)$	110	$\mathrm{C}(8) \mathrm{C}(14) \mathrm{C}(15)$	125	$\mathrm{C}(22) \mathrm{C}(23) \mathrm{O}(5)$	100
$\mathrm{C}(28) \mathrm{C}(4) \mathrm{C}(29)$	107	$\mathrm{C}(10) \mathrm{C}(9) \mathrm{C}(11)$	110	$\mathrm{C}(8) \mathrm{C}(14) \mathrm{O}(4)$	110	$\mathrm{C}(32) \mathrm{C}(31) \mathrm{O}(2)$	119
$\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6)$	123	$\mathrm{C}(1) \mathrm{C}(10) \mathrm{C}(5)$	104	$\mathrm{C}(13) \mathrm{C}(14) \mathrm{C}(15)$	109	$\mathrm{C}(32) \mathrm{C}(31) \mathrm{O}(6)$	124
$\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(10)$	120	$\mathrm{C}(1) \mathrm{C}(10) \mathrm{C}(9)$	115	$\mathrm{C}(13) \mathrm{C}(14) \mathrm{O}(4)$	106	$\mathrm{O}(2) \mathrm{C}(31) \mathrm{O}(6)$	117
$\mathrm{C}(6) \mathrm{C}(5) \mathrm{C}(10)$	117	$\mathrm{C}(1) \mathrm{C}(10) \mathrm{C}(19)$	112	$\mathrm{C}(15) \mathrm{C}(14) \mathrm{O}(4)$	58	$\mathrm{C}(31) \mathrm{C}(32) \mathrm{I}$	110
$\mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(7)$	128	$\mathrm{C}(5) \mathrm{C}(10) \mathrm{C}(9)$	110	$\mathrm{C}(14) \mathrm{C}(15) \mathrm{C}(16)$	98	$\mathrm{C}(6) \mathrm{O}(2) \mathrm{C}(31)$	115
$\mathrm{C}(5) \mathrm{C}(6) \mathrm{O}(2)$	113	$\mathrm{C}(5) \mathrm{C}(10) \mathrm{C}(19)$	105	$\mathrm{C}(14) \mathrm{C}(15) \mathrm{O}(4)$	59	$\mathrm{C}(14) \mathrm{O}(4) \mathrm{C}(15)$	63
$\mathrm{C}(7) \mathrm{C}(6) \mathrm{O}(2)$	118	$\mathrm{C}(9) \mathrm{C}(10) \mathrm{C}(19)$	110	$\mathrm{C}(16) \mathrm{C}(15) \mathrm{O}(4)$	106	$\mathrm{C}(21) \mathrm{O}(5) \mathrm{C}(23)$	114
$\mathrm{C}(6) \mathrm{C}(7) \mathrm{C}(8)$	109						

Table 3.
Standard deviations of the final atomic co-ordinates (\AA).

Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
$\mathrm{C}(1)$	0.059	0.042	0.046	$\mathrm{C}(13)$	0.054	0.047	0.044	$\mathrm{C}(29)$	0.075	0.050	0.055
$\mathrm{C}(2)$	0.058	0.045	0.044	$\mathrm{C}(14)$	0.053	0.047	0.041	$\mathrm{C}(30)$	0.063	0.045	0.044
$\mathrm{C}(3)$	0.069	0.042	0.043	$\mathrm{C}(15)$	0.069	0.038	0.043	$\mathrm{C}(31)$	0.052	0.045	0.056
$\mathrm{C}(4)$	0.051	0.043	0.047	$\mathrm{C}(16)$	0.059	0.040	0.050	$\mathrm{C}(32)$	0.057	0.058	0.051
$\mathrm{C}(5)$	0.049	0.038	0.044	$\mathrm{C}(17)$	0.055	0.041	0.049	$\mathrm{O}(1)$	0.051	0.031	0.032
$\mathrm{C}(6)$	0.061	0.040	0.044	$\mathrm{C}(18)$	0.051	0.036	0.047	$\mathrm{O}(2)$	0.037	0.028	0.030
$\mathrm{C}(7)$	0.064	0.051	0.049	$\mathrm{C}(19)$	0.053	0.048	0.050	$\mathrm{O}(3)$	0.037	0.028	0.033
$\mathrm{C}(8)$	0.056	0.041	0.046	$\mathrm{C}(20)$	0.059	0.048	0.43	$\mathrm{O}(4)$	0.033	0.024	0.027
$\mathrm{C}(9)$	0.047	0.035	0.048	$\mathrm{C}(21)$	0.069	0.058	0.055	$\mathrm{O}(5)$	0.078	0.042	0.058
$\mathrm{C}(10)$	0.072	0.050	0.048	$\mathrm{C}(22)$	0.050	0.046	0.053	$\mathrm{O}(6)$	0.042	0.026	0.028
$\mathrm{C}(11)$	0.068	0.049	0.055	$\mathrm{C}(23)$	0.084	0.046	0.063	I	0.004	0.003	0.004
$\mathrm{C}(12)$	0.063	0.042	0.051	$\mathrm{C}(28)$	0.067	0.046	0.051				

Fig. 3. The crystal structure of cedrelone iodoacetate as viewed in projection along the a-axis.

Fig. 4. The crystal structure of cedrelone iodoacetate as viewed in projection along the c-axis.
does not differ significantly from the value of $1.334 \AA$ in ethylene. ${ }^{11}$ The average carbonoxygen double-bond distance in the carbonyl groups of $1 \cdot 20 \AA$ compares favourably with the values of $1.212 \AA$ in parabanic acid, ${ }^{12} 1 \cdot 222 \AA$ in p-benzoquinone, ${ }^{13}$ and $1.195 \AA$ in tetrachloro- p-benzoquinone. ${ }^{14}$ In the epoxide ring the average carbon-oxygen bond length is $1 \cdot 47 \AA$, while the values quoted for ethylene oxide, ${ }^{15}$ cyclopentene oxide, ${ }^{16}$ and clerodin bromo-lactone ${ }^{17}$ are $1 \cdot 44,1 \cdot 47$, and $1 \cdot 49 \AA$, respectively. The bond lengths in the iodoacetate group show no significant deviation from the expected values.

The strong steric interaction between axial 1,3-methyl groups is reflected in the nonbonded distance of $3.04 \AA$ between $\mathrm{C}(19)$ and $\mathrm{C}(30)$; on the basis of standard bond lengths and valency angles the distance between these atoms is expected to be only $2.54 \AA$. The steric interaction between the 28 - and 29 -methyl groups and the oxygen substituent at position 6 is presumably the reason why ring a adopts a half-boat conformation. Ring c is locked in a boat conformation by the β-oriented epoxide group.

The arrangement of the molecules in the crystal as viewed in projection along the a-axis is shown in Fig. 3; the projection along the c axis is shown in Fig. 4. The intermolecular contacts (see Table 2) are all greater than $3 \AA$ and correspond to normal van der Waals interactions.

Experimental

Crystal Data.-Cedrelone iodoacetate, $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{I} ; ~ M=590.4 ; \mathrm{m} . \mathrm{p} .149-150^{\circ}$. Orthorhombic, $a=6.97, b=27.44, c=13.74 \AA, U=2628 \AA^{3}, D_{m}=1.498 \mathrm{~g} . \mathrm{cm}^{-3}$ (by flotation), $Z=4, D_{c}=1.490 \mathrm{~g} . \mathrm{cm} .^{-3}$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right)$. Absorption coefficient for X-rays $(\lambda=1 \cdot 542 \AA) \mu=108 \mathrm{~cm} .^{-1}$. Total number of electrons in the unit cell $=F(000)=1200$.

The crystals were grown from solution in aqueous ethanol and were obtained in the form of thin plates with (010) strongly developed.

Experimental Measurements.-Rotation, oscillation, and moving-film photographs were taken with copper- $K_{\alpha}(\lambda=1.542 \AA)$ radiation. The cell dimensions were obtained from rotation and equatorial layer line Weissenberg photographs. The space group was determined uniquely from the systematic halvings in the X-ray spectra. For the intensity measurements small crystals were used, completely bathed in a uniform beam of X-rays. No corrections for absorption were applied. Photographic records of the $0 k l-5 k l$ and $h k 0-h k 6$ spectra were obtained by means of an equi-inclination Weissenberg camera. For correlation of strong and weak reflections the multiple-film technique ${ }^{18}$ was used. The intensities were estimated visually and were corrected by the usual factors (Lorentz, polarisation, and rotation ${ }^{19}$). The various layers were placed on the same relative scale by comparison of common reflections on different photographs; the absolute scale was obtained at a later stage by correlation with the calculated structure amplitudes, $\left|F_{c}\right|$. In all only 1163 independent structure amplitudes were measured (Table 4), the low total being a consequence of the non-appearance of reflections beyond moderate values of $\sin \theta$. This effect (i.e., a high temperature factor, B) probably indicates some disorder in the molecular packing in the crystal. In addition to the 1163 observed reflections 122 unobserved reflections at low values of $\sin \theta$ were included in the structure analysis, each being assigned a value of $\left|F_{o}\right|$ equal to half the minimum $|F|$ locally observable. A total of 1285 reflections was therefore employed in the determination of the structure.

The crystal density was measured by flotation of the crystals in carbon tetrachloride-light petroleum.

Structure Analysis.-The co-ordinates of the iodine atom were determined initially from twodimensional Patterson syntheses along the a - and the c-crystal axes. These projections are shown in Figs. 5 and 6.

[^2]Table 4.
Measured and calculated values of the structure factors．

いロan

$$
0 \$
$$

$$
\begin{aligned}
& 0 \infty \\
& 0 \infty
\end{aligned}
$$ Fof．

 \sim
$h k$ ちちonau－

$1 k k$
114
115

$\begin{array}{cc} & F \\ 7 & 106 \\ 8 & 57 \\ 9 & 38 \\ 10 & 17\end{array}$

Table 4. (Continued.)

¢										
-	\wedge	-	$\stackrel{ }{-}$	-	-	-	-	A		\cdots
\bigcirc	∞	\checkmark	\bigcirc	\checkmark	$\stackrel{ }{\wedge}$	\cdots	N	N	\checkmark	

 $h k l$

The first three-dimensional Fourier synthesis was evaluated with the measured values of the structure amplitudes and the phase constants appropriate to the iodine atom alone. The approximately centrosymmetrical arrangement of the iodine atoms in the unit cell led to spurious planes of symmetry in the electron-density distribution and no clear details of the molecular structure could be discerned.

Improved co-ordinates were obtained for the iodine atom, and an electron-density distribution based on the revised phase angles was calculated; because of the spurious symmetry and high temperature factor the peaks were rather diffuse. Nine of the most prominent peaks were selected as atoms and were included (all as carbon atoms) in the calculation of a third set of structure factors. The value of R, the average discrepancy between calculated and observed structure amplitudes, fell from the previous value of $\mathbf{4 3} \%$ to $35 \cdot 7 \%$.

A third electron-density distribution was then computed and co-ordinates were assigned to a further ten peaks. When structure factors were calculated on the basis of the iodine atom and nineteen carbon atoms, the value of R decreased to $34 \cdot 9 \%$. The improvement was disappointingly small and it seemed that some of the peaks we had selected could not represent genuine atoms. We therefore plotted the co-ordinates of these nineteen peaks on a twodimensional electron-density distribution based on the iodine phases. Five of the atoms fell on regions of rather low electron-density and were omitted from the next structure-factor calculation which was based, therefore, on the iodine atom and fourteen carbon atoms. The value of R was $\mathbf{3 3} \cdot 9 \%$.

On examining the subsequent three-dimensional electron-density distribution it was realised that a rather distorted six-membered ring was not of the cyclohexane type but was actually a cyclopentane ring bearing a 1,2 -epoxide. The biogenetic relation to limonin ${ }^{4,7}$ (III) was
immediately evident and the location of the remaining atoms was straightforward. The iodine atom, twenty-three carbon atoms, and five oxygen atoms were employed in the next calculation of structure amplitudes and phase constants, and the value of R fell to 29.6%.

In the next three-dimensional electron-density distribution all the atoms were clearly resolved and the correct chemical type could be assigned to each atom except in the furan ring where the choice of oxygen atom was still not unique.

Two further rounds of structure-factor and Fourier calculations were carried out. Both F_{o} and F_{c} maps were computed, errors due to termination of series were corrected, and individual isotropic temperature factors were assigned. The value of R was reduced to $20 \cdot 4 \%$.

The refinement was completed by performing four cycles of least-squares adjustment of the

Fig. 5. Patterson projection along the a-axis. Contour scale arbitrary.

Fig. 6. Patterson projection along the c-axis. Contour scale arbitrary.
positional and thermal parameters of the atoms; the programme employed was that devised by Dr. J. S. Rollett. ${ }^{20}$ The final value for the discrepancy factor R is $\mathbf{1 7 . 5} \%$ over all the observed structure amplitudes.

During the refinement all the atoms of the furan ring were weighted as carbon atoms. An examination of the bond lengths in the ring, the intermolecular contacts involving the ring, the temperature factors given by the least-squares refinement, and the peak heights led us to favour the oxygen assignment defined in Table 1 and Fig. 2. However, the alternative assignment, $\mathrm{C}(23)$ an oxygen atom and $\mathrm{O}(5)$ a carbon atom, cannot be completely excluded. It is possible that there is some disorder associated with the orientation of the furan ring in the crystal, the alternative assignments of the oxygen atom representing orientations of the furan ring related by rotation through 180° about the single bond $\mathrm{C}(17)-\mathrm{C}(20)$.

The theoretical atomic scattering factors employed in the structure-factor calculations were
${ }^{20}$ Rollett, in " Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 87.
those of Berghuis et al. ${ }^{21}$ for carbon and oxygen, and the Thomas-Fermi values ${ }^{22}$ for iodine. The final atomic co-ordinates are in Table 1, the molecular dimensions and some non-bonded distances in Table 2, and the final values of $\left|F_{o}\right|,\left|F_{c}\right|$, and α in Table 4.

The standard deviations of the final atomic co-ordinates were derived from the leastsquares residuals by application of the equation

$$
\sigma^{2}\left(x_{i}\right)=\sum w_{j}\left(\Delta F_{j}\right)^{2} /\left[(n-s) \sum w_{j}\left(\partial F_{j} / \partial x_{i}\right)^{2}\right] .
$$

The results are listed in Table 3.
As some doubt was felt about the physical significance of the anisotropic temperature factors derived for the carbon and oxygen atoms, we have not listed these parameters here but give in Table 1 an equivalent isotropic temperature factor for each atom deduced from the anisotropic thermal parameters; the anisotropic temperature factors have been listed elsewhere by Grant and Hamilton. ${ }^{23}$ An examination of the anisotropic parameters showed that the average apparent thermal vibration of the atoms is considerably greater in the a-direction ($\bar{B}_{11}=7 \cdot 1 \AA^{2}$) than in the b - or c-direction ($\bar{B}_{22}=4.9 \AA^{2}, \bar{B}_{33}=4.3 \AA^{2}$). The large value of \bar{B}_{11} is undoubtedly connected with the rapid decline in intensity values with increasing $\sin \theta$ mentioned earlier.

The final three-dimensional electron-density distribution was evaluated on the basis of the phase constants in Table 4 and is shown in Fig. 1 by means of superimposed contour sections drawn parallel to (001). The corresponding atomic arrangement is illustrated in Fig. 2.

The extensive calculations were performed on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime. We are indebted to the Department of Scientific and Industrial Research for maintenance grants (to I. J. G. and J. A. H.), to the University of Glasgow for an I.C.I. Research Fellowship (to T. A. H.), and to Dr. R. Hodges, Mr. S. G. McGeachin, and Professor R. A. Raphael, F.R.S., for supplies of cedrelone iodoacetate.

Chemistry Department, The University, Glasgow, W.2. [Received, September 28th, 1962.]
${ }^{21}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
22 " Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, Vol. II, p. 572.
${ }^{23}$ Hamilton, Ph.D. Thesis, University of Glasgow, 1962; Grant, Ph.D. Thesis, University of Glasgow, 1962.

[^0]: ${ }^{1}$ For a preliminary report see Grant, Hamilton, Hamor, Hodges, McGeachin, Raphael, Robertson, and Sim, Proc. Chem. Soc., 1961, 444.
 ${ }^{2}$ Parihar and Dutt, J. Indian Chem. Soc., 1950, 2\%, 77.
 ${ }^{3}$ Gopinath, Govindachari, Parthasarathy, Viswanathan, Arigoni, and Wildman, Proc. Chem. Soc., 1961, 446.

[^1]: ${ }^{4}$ Barton, Pradhan, Sternhell, and Templeton, J., 1961, 255; Arigoni, Barton, Corey, and Jeger, in collaboration with Cagliotti, Dev, Ferini, Glazier, Melera, Pradhan, Schaffner, Sternhell, Templeton, and Tobinaga, Experientia, 1960, 16, 41.

 5 Hodges, McGeachin, and Raphael, following paper.
 ${ }^{6}$ Robertson and Woodward, $J ., 1937,219$; 1940, 36; Sim, in " Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 227.
 ${ }^{7}$ Arnott, Davie, Robertson, Sim, and Watson, Experientia, 1960, 16, 49; J., 1961, 4183.
 ${ }^{8}$ Akisanya, Bevan, Hirst, Halsall, and Taylor, J., 1960, 3827.
 ${ }^{9}$ Sutherland, Sim, and Robertson, Proc. Chem. Soc., 1962, 222.
 ${ }^{10}$ Barton, McGhie, Pradhan, and Knight, Chem. and Ind., 1954, 1325; J., 1955, 876.

[^2]: ${ }_{11}$ Bartell and Bonham, J. Chem. Phys., 1957, 2\%, 1414.
 12 Davies and Blum, Acta Cryst., 1955, 8, 129.
 13 Trotter, Acta Cryst., 1960, 13, 86.
 ${ }^{14}$ Chu, Jeffrey, and Sakurai, Acta Cryst., 1962, 661.
 ${ }^{15}$ Cunningham, Boyd, Myers, Gwinn, and Le Van, J. Chem. Phys., 1951, 19, 676.
 ${ }^{16}$ Erlandsson, Arkiv Fysik, 1955, 9, 341.
 ${ }_{17}$ Paul, Sim, Hamor, and Robertson, J., 1962, 4133.
 ${ }^{18}$ Robertson, J. Sci. Inst., 1943, 20, 175.
 19 Tunell, Amer. Min., 1939, 24, 448.

